Source code for sequifier.optimizers.ademamix

# type: ignore

# from https://github.com/nanowell/AdEMAMix-Optimizer-Pytorch. Thanks a lot!

import math

import torch
from torch.optim import Optimizer


[docs] class AdEMAMix(Optimizer): """Implements the AdEMAMix optimizer. This optimizer is based on the paper "AdEMAMix: A Novel Adaptive Optimizer for Deep Learning". It combines the advantages of Adam and EMA, and introduces a mixing term to further improve performance. Args: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): Learning rate (default: 1e-3). betas (Tuple[float, float, float], optional): Coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999, 0.9999)). eps (float, optional): Term added to the denominator to improve numerical stability (default: 1e-8). weight_decay (float, optional): Weight decay (L2 penalty) (default: 0). alpha (float, optional): Mixing coefficient (default: 5.0). T_alpha_beta3 (int, optional): Time period for alpha and beta3 scheduling (default: None). """ def __init__( self, params={}, lr=1e-3, betas=(0.9, 0.999, 0.9999), eps=1e-8, weight_decay=0, alpha=5.0, T_alpha_beta3=None, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") assert len(betas) == 3, f"Invalid beta parameters: {betas}, expected 3" assert all( 0.0 <= beta < 1.0 for beta in betas ), f"Invalid beta parameters: {betas}" if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, alpha=alpha, T_alpha_beta3=T_alpha_beta3, ) super(AdEMAMix, self).__init__(params, defaults)
[docs] def __setstate__(self, state): """Set the state of the optimizer. Args: state (dict): The state of the optimizer. """ super(AdEMAMix, self).__setstate__(state)
[docs] @torch.no_grad() def step(self, closure=None): """Perform a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. (default: None) Returns: The loss, if the closure is provided. Otherwise, returns None. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] exp_avg_slow = [] state_steps = [] for p in group["params"]: if p.grad is not None: params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError("AdEMAMix does not support sparse gradients") grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) # Slow exponential moving average state["exp_avg_slow"] = torch.zeros_like( p, memory_format=torch.preserve_format ) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) exp_avg_slow.append(state["exp_avg_slow"]) state["step"] += 1 state_steps.append(state["step"]) beta1, beta2, beta3 = group["betas"] alpha = group["alpha"] T_alpha_beta3 = group["T_alpha_beta3"] self._update_adamemix( params_with_grad, grads, exp_avgs, exp_avg_sqs, exp_avg_slow, state_steps, beta1=beta1, beta2=beta2, beta3=beta3, alpha=alpha, T_alpha_beta3=T_alpha_beta3, lr=group["lr"], weight_decay=group["weight_decay"], eps=group["eps"], ) return loss
def _update_adamemix( self, params, grads, exp_avgs, exp_avg_sqs, exp_avg_slow, state_steps, beta1, beta2, beta3, alpha, T_alpha_beta3, lr, weight_decay, eps, ): """Perform the AdEMAMix update for a single parameter group. Args: params (list[torch.Tensor]): List of parameters to update. grads (list[torch.Tensor]): List of gradients for each parameter. exp_avgs (list[torch.Tensor]): List of exponential moving averages of gradients. exp_avg_sqs (list[torch.Tensor]): List of exponential moving averages of squared gradients. exp_avg_slow (list[torch.Tensor]): List of slow exponential moving averages of gradients. state_steps (list[int]): List of steps for each parameter. beta1 (float): Coefficient for the first moment estimate. beta2 (float): Coefficient for the second moment estimate. beta3 (float): Coefficient for the slow moment estimate. alpha (float): Mixing coefficient. T_alpha_beta3 (int): Time period for alpha and beta3 scheduling. lr (float): Learning rate. weight_decay (float): Weight decay. eps (float): Epsilon term for numerical stability. """ for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] exp_avg_slow_i = exp_avg_slow[i] step = state_steps[i] bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step if T_alpha_beta3 is not None: alpha_t = min(step * alpha / T_alpha_beta3, alpha) beta3_t = min( math.exp( math.log(beta1) * math.log(beta3) / ( (1 - step / T_alpha_beta3) * math.log(beta3) + (step / T_alpha_beta3) * math.log(beta1) ) ), beta3, ) else: alpha_t = alpha beta3_t = beta3 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) exp_avg_slow_i.mul_(beta3_t).add_(grad, alpha=1 - beta3_t) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) step_size = lr / bias_correction1 if weight_decay != 0: param.add_(param, alpha=-weight_decay * lr) param.addcdiv_(exp_avg + alpha_t * exp_avg_slow_i, denom, value=-step_size)